A new total variation diminishing implicit nonstandard finite difference scheme for conservation laws

Authors

Abstract:

In this paper, a new implicit nonstandard finite difference scheme for conservation laws, which preserving the property of TVD (total variation diminishing) of the solution, is proposed. This scheme is derived by using nonlocal approximation for nonlinear terms of partial differential equation. Schemes preserving the essential physical property of TVD are of great importance in practice. Such schemes are free of spurious oscillations around discontinuities. Numerical results for Burger's equation is presented. Comparison of numerical results with a classical difference scheme is given.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

a new total variation diminishing implicit nonstandard finite difference scheme for conservation laws

in this paper, a new implicit nonstandard finite difference scheme for conservation laws, which preserving the property of tvd (total variation diminishing) of the solution, is proposed. this scheme is derived by using nonlocal approximation for nonlinear terms of partial differential equation. schemes preserving the essential physical property of tvd are of great importance in practice. such s...

full text

A total variation diminishing high resolution scheme for nonlinear conservation laws

In this paper we propose a novel high resolution scheme for scalar nonlinear hyperbolic conservation laws. The aim of high resolution schemes is to provide at least second order accuracy in smooth regions and produce sharp solutions near the discontinuities. We prove that the proposed scheme that is derived by utilizing an appropriate flux limiter is nonlinear stable in the sense of total varia...

full text

A Genuinely High Order Total Variation Diminishing Scheme for One-Dimensional Scalar Conservation Laws

It is well known that finite difference or finite volume total variation diminishing (TVD) schemes solving one-dimensional scalar conservation laws degenerate to first order accuracy at smooth extrema [8], thus TVD schemes are at most second order accurate in the L1 norm for general smooth and non-monotone solutions. However, Sanders [12] introduced a third order accurate finite volume scheme w...

full text

Implicit Finite Difference Methods for Hyperbolic Conservation Laws

Hyperbolic conservation laws (HCLs) are a class of partial differential equations that model transport processes. Many important phenomena in natural sciences are described by them. In this paper we consider finite difference methods for the approximation of HCLs. As HCLs describe an evolution in time, one may distinguish explicit and implicit schemes by the corresponding time integration mecha...

full text

The new implicit finite difference scheme for two-sided space-time fractional partial differential equation

Fractional order partial differential equations are generalizations of classical partial differential equations. Increasingly, these models are used in applications such as fluid flow, finance and others. In this paper we examine some practical numerical methods to solve a class of initial- boundary value fractional partial differential equations with variable coefficients on a finite domain. S...

full text

Nonstandard finite difference schemes for differential equations

In this paper, the reorganization of the denominator of the discrete derivative and nonlocal approximation of nonlinear terms are used in the design of nonstandard finite difference schemes (NSFDs). Numerical examples confirming then efficiency of schemes, for some differential equations are provided. In order to illustrate the accuracy of the new NSFDs, the numerical results are compared with ...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 2  issue 2

pages  91- 98

publication date 2014-04-01

By following a journal you will be notified via email when a new issue of this journal is published.

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023